加减乘除混合运算速算技巧教程(加减乘除速算技巧!100%提高成绩
关于两位数乘法速度算法,加减乘除快!性能提升100%
更多资料请关注微信公众号小学资源园地
亲爱的父母,你还在担心你的孩子讨厌做算术吗?还在担心你的孩子吗?s数学成绩?为了让你的孩子不再害怕数学,小学 法速算技巧,边肖了非常实用方便的!赶紧收藏吧~1 、乘法速算
1.乘数的位数加到被乘数上,数就是之一个积,乘数的位数乘以被乘数的位数,数就是一个积,就是前十个。
示例
1517
15 7=22
5 7=35
-
255
即1517=255
解释
1517
=15 (10 7)
=15 10 15 7
=150 (10 5) 7
=150 70 5 7
=(150 70) (5 7)
为了提高速度,您可以使用 157 ;直接代替 150 70 熟练之后。
例如17 19
17 9=26
7 9=63
也就是260 63=323。
2、个位是1的两位数相乘
十位数相乘,数为前积,数加十位数。然后写数字,加1。
示例
51 31
50 30=1500
50 30=80
-
1580
因为1 1=1,一位必须是1,结果后面加1,就是1581。号码 0 不精通的时候是作为助记符使用的,精通之后就可以不用了。
示例
81 91
80 90=7200
80 90=170
-
7370
-
7371
每个人都可以自己理解原理。
3、十位相同个位不同的两位数相乘
乘数加乘数位数,和乘以十位数整数,积为前积,个位数乘以个位数为后积。
示例
43 46
(43 6) 40=1960
3 6=18
-
1978
例如89 87
(89 7) 80=7680
9 7=63
-
7743
4、首位相同,两尾数和等于10的两位数相乘
十位数加1,得到的和乘以十位数,数是前积,数乘以个位数,数是后积,没有十位数补0。
示例
56 54
(5 1) 5=30 -
6 4=24
-
3024
示例 73 77
(7 1) 7=56 -
3 7=21
-
5621
示例 21 29
(2 1) 2=6 -
1 9=9
-
609
- ;代表十位数和一位数,因为两位数的之一位数相乘得到的数后面跟两个零。请理解,唐 别忘了,这一点很容易被忽视。
5、首位相同,尾数和不等于10的两位数相乘
将前两位相乘(即求之一位的平方),得到的数为前积,两个尾数之和乘以之一位,得到的数为中积,两个尾数相乘得到的数为后积。
示例
56 58
5 5=25 -
(6 8 ) 5=7 -
6 8=48
-
3248
数字的排序是右对齐的,即与单位对齐。这个原则很重要。
6、被乘数首尾相同,乘数首尾和是10的两位数相乘。
乘数之一位加1,和数乘以被乘数之一位,数为前积,两个尾数相乘时数为后积,没有十位数补0。
示例
66 37
(3 1) 6=24 -
6 7=42
-
2442
示例
99 19
p>(1 + 1)× 9 = 18--9 × 9 = 81
----------------------
1881
?7、被乘数首尾和是10,乘数首尾相同的两位数相乘
与帮助6的 相似。两首位相乘的积加上乘数的个位数,得数作为前积,两尾数相乘,得数作为后积,没有十位补0。
例
46 × 99
4 × 9 + 9 = 45--
6 × 9 = 54
-------------------
4554
例:
82 × 33
8 × 3 + 3 = 27--
2 × 3 = 6
-------------------
2706
?8、两首位和是10,两尾数相同的两位数相乘。
两首位相乘,积加上一个尾数,得数作为前积,两尾数相乘(即尾数的平方),得数作为后积,没有十位补0。
例
78 × 38
7 × 3 + 8 = 29--
8 × 8 = 64
-------------------
2964
例
23 × 83
2 × 8 + 3 = 19--
3 × 3 = 9
--------------------
1909
?9、平方速算
a、求11~19 的平方
底数的个位与底数相加,得数为前积,底数的个位乘以个位相乘,得数为后积,满十前一。
例
17 × 17
17 + 7 = 24-
7 × 7 = 49
---------------
289
参阅乘法速算中的“十位是1 的两位相乘”
b、个位是1 的两位数的平方
底数的十位乘以十位(即十位的平方),得为前积,底数的十位加十位(即十位乘以2),得数为后积,在个位加1。
例
71 × 71
7 × 7 = 49--
7 × 2 = 14-
-----------------
5041
参阅乘法速算中的“个位数是1的两位数相乘”
c、个位是5 的两位数的平方
十位加1 乘以十位,在得数的后面接上25。
例
35 × 35
(3 + 1)× 3 = 12--
25
----------------------
1225
d、21~50 的两位数的平方
在这个范围内有四个数字是个关键,在求25~50之间的两数的平方时,若把它们记住了,就可以很省事了。它们是
21 × 21 = 441
22 × 22 = 484
23 × 23 = 529
24 × 24 = 576
求25~50 的两位数的平方,用底数减去25,得数为前积,50减去底数所得的差的平方作为后积,满百进1,没有十位补0。
例
37 × 37
37 - 25 = 12--
(50 - 37)^2 = 169
----------------------
1369
注意底数减去25后,要记住在得数的后面留两个位置给十位和个位。
例
26 × 26
26 - 25 = 1--
(50-26)^2 = 576
-------------------
676
?10、加减法
补数的概念与应用
补数的概念补数是指从10、100、1000……中减去某一数后所剩下的数。
例如10减去9等于1,9的补数是1,反过来,1的补数是9。
补数的应用在速算 中将很常用到补数。例如求两个接近100的数的乘法或除数,将看起来复杂的减法运算转为简单的加法运算等等。
?11、除法速算
某数除以5、25、125时
1、 被除数 ÷ 5
= 被除数 ÷ (10 ÷ 2)
= 被除数 ÷ 10 × 2
= 被除数 × 2 ÷ 10
2、 被除数 ÷ 25
= 被除数 × 4 ÷100
= 被除数 × 2 × 2 ÷100
3、 被除数 ÷ 125
= 被除数 × 8 ÷100
= 被除数 × 2 × 2 × 2 ÷100
在加、减、乘、除四则运算中除法是最麻烦的一项,即使使用速算法很多时候也要加上笔算才能更快更准地算出答案。
加减乘除混合速算小技巧 加减乘除法口算速算技巧