函数拐点的求法例题及答案(以拐点为背景的函数)

生活常识 2023-04-16 12:34生活常识www.baidianfengw.cn

函数的拐点 一类以“拐点”为背景的函数试题解法及思考

函数是高中数学的核心内容,以高等数学知识为背景的函数题,因其背景公平,能考察学生临场应变能力,和后继学习的能力,备受命题者的青睐.笔者通过研究发现,以高等数学中的“拐点”知识为背景的试题正悄然升温,值得关注.

1、“拐点”的概念

拐点,又称“反曲点”,是函数图像凸凹的分界点,是函数的一阶导函数单调性发生改变的点,直观的说,就是使切线穿越曲线的点。对于可导的函数f(x)而言,若其在拐点处有二阶导数,则二阶导数为零,且二阶导数在拐点附近两侧异号. 比如顺着x轴的正方向看,在x=0附近,f(x)=x3图像从上凸变为下凸,函数f(x)=sinx的图像从下凸变为上凸,所以0是它们的拐点。有些函数可能没有拐点,如二次函数,有些函数只有一个拐点如f(x)=x3,而有些可能有多个,如f(x)=sinx.

2、应用

考点1拐点处的切线“穿越”曲线

本质上讲,极值点偏移刻画的是函数图像的“轴对称”形态,而拐点偏移刻画的是函数图像的“中心对称”形态。从近年来,“极值点偏移”问题已经连续多次出现在高考试卷中,如2010年天津卷、2011年辽宁卷、2013年辽宁卷、2016年全国乙卷等,高考命题讲究传承与创新,所以笔者认为“拐点偏移”问题极有可能成为下一轮高考命题的新热点,值得关注!

转载自高中数学之窗

以拐点为背景的函数 基础函数题100道及答案

Copyright@2015-2025 白癜风网版板所有