神经 *** 的基本原理和特点(神经 *** 由哪些类型组成)
怎么解决 中存在回路 神经 主要类型及其应用指南
目前深度学习中的神经 种类繁多,用途各异。由于这个分支在指数增长,跟踪神经 的不同拓扑有助于更深刻的理解。在本文中,我们将展示神经 中最常用的拓扑结构。
图2: 感知器: 大脑中信息存储和组织的概率模型[3] | 来源: 康奈尔航空实验室的弗兰克 · 罗森布拉特标记的感知器。纽约水牛城,1960
神经 拓扑
1. 感知器(Perceptron(P)) :
感知器模型也称为单层神经 。这个神经 只包含两层:
输入层输出层这种类型的神经 没有隐藏层。它接受输入并计算每个节点的加权。然后,它使用激活函数(大多数是Sigmoid函数)进行分类。应用:
分类编码数据库(多层感知器)监控访问数据(多层感知器)2. 前馈(Feed Forward (FF)) :
前馈神经 是一种其中的节点不会形成循环的人工神经 。在这种神经 中,所有的感知器都被安排在输入层接收输入,输出层产生输出。隐藏层与外部世界没有联系,这就是为什么它们被称为隐藏层。在前馈神经 中,一层的每个感知器与下一层的每个节点连接。,所有节点都是完全连接的。需要注意的是,同一层中的节点之间没有可见或不可见的连接。在前馈 中没有后回路。,为了使预测误差最小化,我们通常使用反向传播算法来更新权值。应用:
数据压缩模式识别计算机视觉声纳目标识别语音识别手写字符识别3.径向基 (Radial Basis Network (RBN)) :
径向基函数 通常用于解决函数逼近问题。区别于其它神经 ,它们有更快的学习速度和通用逼近能力。径向基神经 和前馈神经 的主要区别在于,径向基神经 使用径向基函数作为激活函数。Logistic(sigmoid)函数的输出值在0到1之间,用来判断答案是是或否。问题是,如果我们有连续的值,则用不了前馈神经 。径向基神经 确定生成的输出和目标输出距离多大。在连续值的情况下非常有用。,径向基神经 使用其它的激活函数表现就和前馈神经 一样。
应用:
函数逼近时间序列预测分类系统控制4. 深度前馈(Deep Feed-forward (DFF)) :
深层前馈 是使用多个隐藏层的前馈 。只用一层隐藏层的主要问题是过拟合,通过增加隐藏层,可以减少过拟合,提高泛化能力。
应用:
数据压缩模式识别计算机视觉心电图噪声滤波金融预测5. 循环神经 (Recurrent Neural Network (RNN)):
循环神经 是前馈神经 的一种改进形式。在这种类型中,隐藏层中的每个神经元接收具有特定时间延迟的输入。使用这种类型的神经 ,我们需要在当前的迭代中访问之前的信息。例如,当我们试图预测一个句子中的下一个单词时,我们需要知道之前使用的单词。循环神经 可以处理输入并跨时共享任意长度和权重。模型大小不会随着输入的大小而增加,模型中的计算会考虑到历史信息。,这种神经 的问题是计算速度慢。,它不能考虑当前状态的任何未来输入。它也无法记住很久以前的信息。
应用:
机器翻译机器人控制时间序列预测语音识别语音合成时间序列异常检测节奏学习音乐创作6. 长/短期记忆(Long / Short Term Memory (LSTM)) :
LSTM 引入了一个记忆单元。他们可以处理间隔记忆的数据。如上可见,我们可以在RNN中考虑时间延迟,但如果我们有大量的相关数据,RNN很容易失败,而LSTMs 正好适合。,与 LSTMs 相比,RNN不能记忆很久以前的数据。应用:
语音识别写作识别7. 门控循环单位(Gated Recurrent Unit (GRU)):
GRU是LSTM的一个变种,因为它们都有相似的设计,绝大多数时候结果一样好。GRU只有三个门,并且它们不维持内部单元状态。
a. 更新门(Update Gate): 决定有多少过去的知识可以传递给未来。b. 重置门(Reset Gate): 决定过去的知识有多少需要遗忘。c. 当前记忆门(Current Memory Gate): 重置命运的子部分。应用:
复调音乐模型语音信号建模自然语言处理8. 自动编码器(Auto Encoder (AE)) :
自动编码器神经 是一个非监督式机器学习算法。在自动编码器中,隐藏神经元的数量小于输入神经元的数量。自动编码器中输入神经元的数目等于输出神经元的数目。在自动编码器 中,我们训练它来显示输出,输出和输入尽可能接近,这迫使自动编码器找到共同的模式和归纳数据。我们使用自动编码器来更小的表示输入。我们还可以从压缩的数据中重建原始数据。该算法相对简单,因为自动编码器要求输出与输入相同。
编码器: 转换输入数据到低维解码器: 重构压缩数据应用:
分类聚类特征压缩9. 变分自动编码器(Variational Autoencoder (VAE)) :
变分自动编码器(VAE)使用一种概率 来描述观测。它显示了一个特征集中每个属性的概率分布。应用:
在句子之间插入图像自动生成10. 去噪自动编码器(Denoising Autoencoder (DAE)
在这种自动编码器中, 不能简单地将输入复制到其输出,因为输入也包含随机噪声。在 DAE 上,我们制造它是为了降低噪声并在其中产生有意义的数据。在这种情况下,该算法迫使隐藏层学习更鲁棒的特征,以便输出是噪声输入的更精确版本。
应用:
特征提取降维11.稀疏自动编码器(Sparse Autoencoder (SAE)) :
在稀疏自动编码器 中,我们通过惩罚隐藏层的激活来构造我们的损失函数,这样当我们将一个样本输入 时,只有少数节点被激活。这种 背后的直觉是,例如,如果一个人声称自己是A、 B、 C 和 D 学科的专家,那么这个人可能在这些科目上更多的是一个通才。,如果这个人只是声称自己专注于学科D,那么大概率预期可以从这个人的学科 D 的知识中得到启发。应用:
特征提取手写数字识别12. 马尔可夫链(Markov Chain (MC)) :
马尔可夫链是一个基于某些概率规则经历从一种状态到另一种状态转换的数学系统。过渡到任何特定状态的概率完全取决于当前状态和经过的时间。例如,一些可能的状态可以是:
信件数字天气情况棒球比分股票表现应用:
语音识别信息及通讯系统排队论统计学13. 霍菲特 (Hopfield Network (HN)):
在 Hopfield 神经 中,每个神经元都与其它神经元直接相连。在这个 中,神经元要么是开的,要么是关的。神经元的状态可以通过接受其它神经元的输入而改变。我们通常使用 Hopfield 来存储模式和记忆。当我们在一组模式上训练一个神经 ,它就能够识别这个模式,即使它有点扭曲或不完整。当我们提供不完整的输入时,它可以识别完整的模式,这将返回更佳的猜测。应用:
优化问题图像检测与识别医学图像识别增强 X 射线图像14. 波茨曼机(Boltzmann Machine (BM)):
波茨曼机 包括从一个原始数据集中学习一个概率分布,并使用它来推断没见过的数据。在 BM 中,有输入节点和隐藏节点,一旦所有隐藏节点的状态发生改变,输入节点就会转换为输出节点。例如: 假设我们在核电站工作,安全必须是之一位的。我们的工作是确保动力装置中的所有组件都可以安全使用——每个组件都会有相关的状态,使用布尔值1表示可用,0表示不可用。,还有一些组成部分,我们不可能定期测量它们的状态。,没有数据可以告诉我们,如果隐藏的部件停止工作,发电厂什么时候会爆炸。在这种情况下,我们构建了一个模型,当组件更改其状态时,它会发出通知。这样,我们将得到通知检查该组件,并确保动力装置的安全。
应用
降维分类回归协同过滤特征学习15. 受限玻尔兹曼机(Restricted Boltzmann Machine (RBM)):
RBM 是 BM 的一种变种。在这个模型中,输入层和隐藏层的神经元之间可能有对称的连接。需要注意的一点是,每一层内部都没有内部连接。相比之下,玻尔兹曼机可能有内部连接的隐藏层。这些限制让模型的训练更高效。应用:
过滤特征学习分类风险检测商业及经济分析16.深度信念 (Deep Belief Network (DBN)) :
深度信念 包含许多隐藏层。我们可以使用无监督算法调用 DBN,因为它学习而不需要任何监督。DBN 中的层起着特征检测器的作用。经过无监督训练后,我们可以用监督 训练我们的模型进行分类。我们可以将 DBN 表示为受限玻耳兹曼机(RBM)和自动编码器(AE)的组合,的 DBN 使用概率 得到结果。应用:
检索文件/图像非线性降维17. 深度卷积 (Deep Convolutional Network (DCN)) :
卷积神经 是一种神经 ,主要用于图像分类、图像聚类和目标识别。DNN 允许无监督地构造层次图像表示。DNN 被用来添加更复杂的特征,以便它能够更准确地执行任务。
应用:
识别面部,街道标志,肿瘤图像识别视频分析自然语言处理异常检测药物发现跳棋游戏时间序列预测18. 反卷积神经 (Deconvolutional Neural Networks (DN)) :
反卷积 是一种反向过程的卷积神经 。尽管反卷积 在执行方式上类似于 CNN,但它在 AI 中的应用是非常不同的。反卷积 有助于在以前认为有用的 中找到丢失的特征或信号。卷积 可能由于与其它信号卷积而丢失信号。反卷积 可以接受一个向量输入并还原成照片。应用:
图像超分辨率图像的表面深度估计光流估计19. 深度卷积逆图形 (Deep Convolutional Inverse Graphics Network (DC-IGN)) :
深度卷积逆图形 旨在将图形表示与图像联系起来。它使用元素,如照明,对象的位置,纹理,和其它方面的图像设计来进行非常复杂的图像处理。它使用不同的层来处理输入和输出。深度卷积逆图形 利用初始层通过各种卷积和更大池化进行编码,然后利用后续层进行展开解码。应用:
人脸处理20. 生成对抗 (Generative Adversarial Network (GAN)) :
给定训练数据,GANs 学习用与训练数据相同的统计数据生成新的数据。例如,如果我们对 GAN 模型进行照片训练,那么一个经过训练的模型就能够生成人眼看起来真实可信的新照片。GAN的目标是区分真实结果和合成结果,以便产生更真实的结果。
应用:
创造新的人体姿势照片变Emoji面部老化超分辨率服装变换视频预测21. 液态机(Liquid State Machine (L )):
液态机是一种特殊的脉冲神经 。液态机由大量的神经元组成。这里,每个节点接收来自外部源和其它节点的输入,这些输入可能随时间而变化。请注意,液态机上的节点是随机连接的。在液态机中,激活函数替换为阈值级别。只有当液态机达到阈值水平时,一个特定的神经元才会发出输出。
应用:
语音识别计算机视觉22. 极限学习机(Extreme Learning Machine (ELM)):
传统系统处理大量数据的主要缺点是:
基于梯度算法学习速度慢迭代调优所有参数极限学习机随机选择隐藏节点,然后通过分析确定输出权重。,这些算法比一般的神经 算法更快。,在极限学习机 中,随机分配的权重通常不会更新。它只需一步就能学会输出权重。应用:
分类回归聚类稀疏逼近特征学习23. 回声状态 (Echo State Network (ESN)) :
ESN是循环神经 的一个子类型。这里每个输入节点接收到一个非线性信号。在 ESN 中,隐藏的节点是稀疏连接的。隐节点的连通度和权值是随机分配的。在ESN上,最终的输出权重是可训练更新的。
应用:
时间序列预测数据挖掘24.深度残差 (Deep Residual Network (DRN)) :
具有多层结构的深层神经 训练很难,且需要花费大量的时间。它也可能导致结果退化。深度残差 即使有很多层也可以防止结果退化。使用残差 ,其输入的一些部分会传递到下一层。,这些 可以相当深(它可能包含大约300层)。
应用:
图像分类目标检测语义分割语音识别语言识别25. Kohonen (Kohonen Networks (KN) ):
Kohonen 是一种无监督算法。Kohonen 也称为自组织映射,当我们的数据分散在多个维度,而我们希望它只有一个或两个维度时,这非常有用。它可以认为是一种降维的 。我们使用 Kohonen 可视化高维数据。他们使用竞争学习而不是纠错学习。各种拓扑结构:
矩形网格拓扑六边形网格拓扑应用
降维水质评价与预测沿岸水资源管理26. 支持向量机(Support Vector Machines (SVM)):
支持向量机神经 是支持向量机和神经 的混合算法。对于一组新的样本,它总是试图分为两类: 是或否(1或0)。支持向量机通常用于二分类。这些通常不被认为是神经 。
应用:
人脸检测文本分类分类生物信息学手写识别27. 神经图灵机(Neural Turing Machine (NTM)) :
神经图灵机结构包含两个主要组件:
神经 控制器记忆库在这个神经 中,控制器通过输入和输出向量与外界进行交互。它还通过与记忆矩阵交互来执行选择性读写操作。图灵机被认为在计算上等同于现代计算机。,NTM通过与外部存储的交互,扩展了标准神经 的能力。应用:
机器人制造人造大脑#今日头条小助手##神经 #
神经 由哪些类型组成 神经 控制主要类型有哪些